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Abstract

This manuscript gives an outline of the Kalman �lter (KF) algorithm including deriva-
tions of the steps involved. It is based on Canova (2007), Jesús Fernández-Villaverde’s slides
“State Space Models and Filtering” (JFV in the following) and Hamilton (1994). Two examples
illustrate the use of the KF: Maximising the likelihood of a DSGE model with a �nancial accel-
erator with respect to some parameters and estimating time-varying coe�cients for a Taylor
rule with US data from 1982Q1 to 2007Q2.

1 Purpose and properties of the Kalman �lter

1.1 The Kalman �lter in macroeconomics
For a given model structure, the Kalman �lter (KF) generates one-period ahead forecasts of ob-
servables yt, where we assume that these observables are driven by some unobservable states xt.
An example from economics could be a stochastic simple growth model with yt being output and
consumption and xt being the capital stock and technology. The KF has two main advantages: It
optimally estimates the unobservable states in a recursive procedure and furthermore generates
exact �nite-sample forecasts and the exact likelihood function for Gaussian ARMA processes.
The centerpiece of the KF is a model in state-space form, where observables yt depend on states
xt. The state-space model is described by two equations: A transition (or state) equation, (1), and
a measurement (or observation) equation, (2),

xt = Fxt−1 +Gwt (1)
yt = A+Bzt +H ′xt + Cvt (2)

where wt ∼ N(0, Q) and vt ∼ N(0, R) are independent Gaussian martingale sequences and zt is
a vector of exogenous or predetermined variables. In the following, I will abstract from including
∗This note is available on my homepage (http://www.bkolb.eu/codes/kalman.zip). Comments are welcome! Please

send them to benedikt@bkolb.eu.
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exogenous variables, soB is a zero matrix.1 Moreover, I will assumeA = 0 for simplicity andC =
In, where In is the identity matrix of appropriate dimension. This leaves us with the simpli�ed
state-space model

xt = Fxt−1 +Gwt (3)
yt = H ′xt + vt (4)

Stability of the system requires that the eigenvalues of F are < 1.

1.2 Some caveats
1. Beware of the central assumptions:

(a) Initial conditions of and innovations to ARMA processes are Gaussian.
(b) The system is stable (all eigenvalues of F are < 1).

2. If initial conditions or innovations are not normal, the KF produces only the best linear
forecast for the data yt. In this case, non-linear �lters might do a better job in predicting yt,
see Canova (2007), p. 219. For example, see Fernández-Villaverde and Rubio-Ramírez (2007)
for an outline of the particle �lter.

3. For unstable systems (some of the eigenvalues of F are ≥ 1), you can use the informa-
tion �lter by Anderson and Moore (1979) or the non-stationary KF by Koopman (1997), see
Canova, p. 216.

4. The state space representation is not unique, see JFV, slide 4

5. You can write many di�erent processes in state-space form by adjusting them appropriately,
see JFV slides 5-12 and Canova (2007), Exercise 6.1

2 Algorithm

2.1 The KF algorithm
This subsection just presents the algorithm. For derivations, please refer to Section 3.
Start with initial values for states xt|t−1 and their forecast error matrix Σt|t−1 – how to choose
these values is outlined in the next subsection. We �rst get the forecast error vt as

vt = yt − yt|t−1
= yt −H ′xt|t−1 (5)

The mean squared – one-step-ahead – forecast error (MSFE) of the observables is given by

1. See Hamilton (1994) for derivations including a non-zero B matrix.
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Ωt|t−1 ≡ E
(
(y − yt|t−1)(yt − yt|t−1)′|yt−1

)
(6)

= H ′Σt|t−1H +R

where yt−1 denotes the history of observables up to t − 1. Remember that R is the variance-
covariance matrix of the measurement equation (2), i.e. it represents the size of the measurement
error.
At this step, you can also back out the (log) likelihood of the model, log l(y|yt−1, F,G,H,Q,R),
which will be summed up to the total log likelihood:

Lt ≡ log l(yT |F,G,H,Q,R) (7)

=
T∑
t=1

log l(yt|yt−1, F,G,H,Q,R)

= −1

2

T∑
t=1

[
n · log(2π) + log

(
det(Ωt|t−1)

)
+ v′tΩ

−1
t|t−1vt

]
where n is the number of states to be estimated.2
The Kalman gain is3

Kt = Σt|t−1HΩ−1t|t−1 (8)

Why is this called a “gain function”? Intuitively, if we did a bad job forecasting xt|t−1 (Σt|t−1 large),
we will give a heavy weight to the new information (Kt large). If the new information is mostly
noise (R large and hence Ω−1t|t−1 small), we give heavy weight to the old prediction (Kt small).4

The MSFE of the states given history yt−1 is given by

Σt+1|t ≡ E
(
(xt+1 − xt+1|t)(xt+1 − xt+1|t)

′|yt
)

(9)
= FΣt|t−1F

′ +GQG′ − FKtΩt|t−1K
′
tF
′

The nowcast for the state xt is formed by including the new information from yt:

xt|t = xt|t−1 +Ktvt

where vt is the forecast error. As the state forecast at this point, xt+1|t, is simply Fxt|t, we get

xt+1|t = Fxt|t = Fxt|t−1 + FKtvt (10)

The next iteration then starts with the values Σt+1|t and xt+1|t.
A short algorithm su�cient to extract the log likelihood Lt of the model in state-space form is
thus given by (5) to (10).
Note that the equations for xt|t−1 and Ωt|t−1 (10 and 6) are referred to as “prediction equations”
and the ones for xt|t and Σt|t (see Section 3) are called “updating equations”.

2. In the code, the log likelihood is added to the previous value in every iteration, starting at zero. So after the
loop, we rescale by 0.5 and add the constant term Tn log(2π).

3. Canova (2007) calls K̃t ≡ FKt the Kalman gain (see p. 216), while I follow JFV in calling Kt the Kalman gain.
4. See also JFV, slide 30.
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2.2 Initial values
How to obtain initial values xt|t−1 and Σt|t−1? For a stable system (eigenvalues of F are < 1), we
usually use the unconditional mean as an initial value for the unknown states, x1|0 = E(x), which
follows from the distributional assumption. Similarly, the mean squared forecast error is initialised
by the unconditional variance of the process: Ω1|0 = FΩ1|0F

′ + GQG′, so that vec(Ω1|0) =
[In2− (F ⊗F ′)]−1vec(GQG′), where Iz is the identity matrix of dimension z and n is the number
of states (state variables and exogenous shock processes in the model) to be estimated.5

3 Derivations
In the following, I derive the equations of the KF (equations 6, 8 and 9). I make use of

yt = H ′xt + vt

yt|t−1 = H ′xt|t−1

Et
(
vt(xt − xt|t−1)′|yt−1

)
= 0

Et
(
wt+1(xt − xt|t)′|yt

)
= 0

As in Section 2, every iteration takes xt|t−1 and Σt|t−1 as given.

Ωt|t−1. First, the mean squared forecast error of observables and states given the history of
observables yt−1, Ωt|t−1, can be derived as

Ωt|t−1 = E
(
(yt − yt|t−1)(yt − yt|t−1)′|yt−1

)
= E

(
(H ′xt + vt −H ′xt|t−1)(x′tH + v′t − x′t|t−1H)|yt−1

)
= E

(
H ′(xt − xt|t−1)(xt − xt|t−1)′H|yt−1

)
+ E

(
vt(xt − xt|t−1)′H|yt−1

)
= + E

(
H ′(xt − xt|t−1)v′t|yt−1

)
+ E

(
vtv
′
t|yt−1

)
= H ′Σt|t−1H + 0 + 0 +R

= H ′Σt|t−1H +R (6)

Kt. Second, the Kalman gain Kt is the coe�cient matrix in

Kt = arg min
k

(yt − yt|t−1|yt−1)

5. An alternative would be to use solve the Lyapunov equation, using e.g. Dynare’s routine lyapunov_symm.
I have added it to my code (commented out as default). The result is e�ectively the same, but lyapunov_symm.m
is slightly slower.
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Kt = E
(
(yt − yt|t−1)(xt − xt|t−1)′|yt−1

)′ × [E ((yt − yt|t−1)(yt − yt|t−1)′|yt−1)]−1
=
[
H ′Σt|t−1

]′ × Ω−1t|t−1

= Σt|t−1HΩ−1t|t−1 (8)

Finally, the mean squared forecast error of states given history yt, Σt+1|t, is a bit harder to derive
analytically, as it requires the MSFE of states given history yt, Σt|t.

Σt|t. Σt|t itself can be conceptually understood as the forecast error given (for now!) the MSFE
given history yt−1, Σt|t−1, minus the Kalman gain on this forecast error variance, KtH

′Σt|t−1:

Σt|t ≡ E
(
(xt − xt|t)(xt − xt|t)′|yt

)
= Σt|t−1 −KtH

′Σt|t−1 (11)

A detailed derivation of this formula is given in Hamilton (1994), see equations [13.2.16] and
[4.5.31], which can only be sketched here. First, write

Σt|t ≡ E
(
(xt − xt|t)(xt − xt|t)′|yt

)
= E

(
[(xt − xt|t−1)−Kt(yt −H ′xt|t−1)]× [(xt − xt|t−1)′ − (yt −H ′xt|t−1)′K ′t]|yt

)
= E

(
(xt − xt|t−1)(xt − xt|t−1)′|yt

)
− E

(
(xt − xt|t−1)(yt −H ′xt|t−1)′K ′t|yt

)
=− E

(
Kt(yt −H ′xt|t−1)(xt − xt|t−1)′|yt

)
+ E

(
Kt(yt −H ′xt|t−1)(yt −H ′xt|t−1)′K ′t|yt

)
Let us write the variance-covariance matrix of the system ([x′t, (y

t−1)′]′, yt, xt) asS11 S12 S13

S21 S22 S23

S31 S32 S33

 =

 It 0 0
S21S

−1
11 1 0

S31S
−1
11 KtH

′(H ′Σt|t−1H +R)−1 1

×
=

S11 0 0
0 H ′Σt|t−1H +R 0
0 0 Σt|t−1 −KtH

′(H ′Σt|t−1H +R)−1H ′Σt|t−1


=

It S−111 S12 S−111 S13

0 1 (H ′Σt|t−1H +R)−1K ′tH
0 0 1


As shown in Hamilton (1994), p. 379f. and p. 98f., this speci�es the MSFE, Σt|t, as the last block of
the block-diagonalised matrix:

Σt|t = Σt|t−1 − Σt|t−1H(H ′Σt|t−1H +R)−1H ′Σt|t−1

= Σt|t−1 −KtH
′Σt|t−1

This completes the sketched derivation of (11).
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Σt+1|t. The formula for Σt+1|t can be derived as

Σt+1|t ≡ E
(
(xt+1 − xt+1|t)(xt+1 − xt+1|t)

′|yt
)

= E
(
(Fxt +Gwt+1 − Fxt|t)(Fxt +Gwt+1 − Fxt|t)′|yt

)
= FE

(
(xt − xt|t)(xt−1 − xt|t)′|yt

)
F ′ +GE

(
wt+1(xt − xt|t)′|yt

)
F ′

= + FE
(
(xt − xt|t)w′t+1|yt

)
G′ +GE

(
wt+1w

′
t+1|yt

)
G′

= FΣt|tF
′ + 0 + 0 +GQG′

= FΣt|tF
′ +GQG′ (12)

Using (11) and (8) in (12), we �nally get

Σt+1|t = FΣt|t−1F
′ +GQG′ − FKtΩt|t−1K

′
tF
′ (9)

This completes the derivations for the KF algorithm.

4 Kalman �lter for DSGE models
I only sketch how to obtain a log-linearised DSGE model in state-space form and how to adjust
the matrices above in that case.
Using Dynare or other codes based on Blanchard and Kahn (1980), e.g. the one outlined in Uhlig
(1995), we get a log-linearised DSGE model in the form

NSVt = P · NSVt−1 +Q · XSVt (13)
CVt = R · NSVt−1 + S · XSVt (14)

XSVt = N · XSVt−1 + εt, εt ∼ N(0,Σ)

where NSV denotes “endogenous state variables”, XSV means “exogenous state variables” and CV
“control variables” (see Uhlig 1995, p.19, who calls CV “endogenous other variables”). To write the
likelihood function of this model given the observables yt, we have to transform the model into
state-space form as

xt = Fxt−1 +Gεt

yt = H ′xt + Jεt
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where εt ∼ N(0, I) and the states xt and the matrices A and B are given by6

xt = (NSVt,XSVt)

F =

[
P Q ·N
0 N

]
G =

[
Q
I

]
Σ1/2

Try it, it works! Note, however, that this formulation in itself would not allow us to use any CVs
(like e.g. output or investment in many models) as observables for our model. So we use the trick
to include the those CVs for which we want to use observable counterparts into the NSVs via a
simple identity. So the equation for NSVt above, (13), contains variables that are not in fact states
(so-called “pseudo-states”).7
Now we only need to connect the individual observable series with their counterpart (controls or
pseudo states) in the model. As now rows in yt correspond to rows in xt, we just need a “matching”
matrix M to select the right columns from xt: M has zero entries except for a unit entry for one
element i per row, which connects the observable series in that row to row i in xt:8

yt = Mxt + νt

where νt ∼ N(0, R) again represents measurement error.
Note that we do not in fact use (14): Intuitively, we get rid of all control variables CVt on which
we have no information from observables. There are more complex settings possible, but I will
focus on this one below.9

6. If you have predetermined or lagged variables in your model, you will have to specify xt =
(NSVt,NSVt−1,XSVt), in which case F and G become

F =

P 0 Q ·N
I 0 0
0 0 N

 , G =

Q0
I


With more lags, matrices expand accordingly.

7. The equations are imputed into the Uhlig algorithm as the matrices for the following system of equations
(x = ESV; y = CV; z = XSV):

0 = AESVt +BESVt−1 + CCVt +DXSVt
0 = Et [FESVt+1 +GESVt +HESVt−1 +HCVt+1 +KCVt + LXSVt+1 +MXSVt]

XSVt+1 = NXSVt + εt, where εt ∼ N(0, I)

Hence, we can easily include some pseudo-states into the vectors ESVt and CVt that give “harmless” identities (using
+1/− 1 entries in the matrices A and C as well asG andK). This leaves us with an enlarged vector ˜ESVt to be used
in the following.

8. So if y1,t = GDPt, and output is located as third variable in the state vector, G13 = 1, while Gi3 = 0 for all
i 6= 3.

9. For example, you can include variables with non-zero mean by including another column into H and F . You
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5 Two examples

5.1 Maximum likelihood estimation of a DSGE model
This example shortly explains the use of the KF for maximising the likelihood of a log-linearised
model.10 Assume you used a routine like the one outlined in Uhlig (1995) to obtain a DSGE model
in state-space form, as explained in Section 4. You start with the state-space model

xt = Fxt−1 +Gεt

yt = Mxt + νt

where εt ∼ N(0, I), and the measurement error is νt ∼ N(0, R). Make sure your data are cho-
sen, detrended and scaled to �t their model counterparts in yt as closely as possible (if in doubt,
adjust the measurement error variance-covariance matrixR accordingly). Use my routine exam-
ple1.m to calculate the (log) likelihood of the model – take the model, data and data treatment
as given.11

To redo the analysis, run example1.m. I initialise a parameter vector Θ with several model
parameters (again, details are not important for the KF here). After some initialisation steps, I use
the Matlab minimisation routine fmincon on the function model_solve.m. This function
gets the (negative) model (log) likelihood for a certain parameter vector by solving the model using
uhligsolve.m12 (calling Harald Uhlig’s solve2.m) and passing the state-space matrices to
kalmanfilter.m to obtain the likelihood. Then we can apply kalmanf.m to extract the
model likelihood. The maximum likelihood estimates are indeed quite di�erent from the initial
values and the (negative log) likelihood increases somewhat for the new parameter values. While
a more careful setting of bounds could allow even better results, one could in principle also add a
full-blown Metropolis-Hastings algorithm for Bayesian estimation.13

also can include growth rates, if you have NSVt−1 in the model, below in the second row:

H ′ =


ȳ1 P2 0 Q2

ȳ2 P5 −P5 Q5 · (N − 1)
ȳ3 P3 0 Q3

ȳ4 P1 0 Q1

 , F =


1 0 0 0
0 P 0 Q ·N
0 I 0 0
0 0 0 N


10. This is based on a project for Fabio Canova, where the likelihood then entered a Metropolis-Hastings algorithm.
11. It is a standard New Keynesian DSGE model with a �nancial friction as in Bernanke, Gertler, and Gilchrist

(1999). The observables are output, consumption, investment, CPI, policy rates and credit spreads as in Gilchrist and
Zakrajsek (2012). Measurement error is assumed to take the intermediate level of R = I · 0.5.

12. Note the inclusion of “pseudo states” like p_y(t) in this code.
13. Adding this to my homepage is a distant goal... Stay tuned :)
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5.2 Fitting a Taylor rule with time-varying coe�cients
Assume you want to estimate a Taylor Rule with time-varying coe�cients with data for the US.14

The process of interest is

Rt = βπ,tΠt + βy,tYt + εr,t, where εr,t ∼ N(0, σ2
r) (15)

Note that this is our measurement equation, while the transition of unobservable Taylor rule
coe�cients (our states) βπ,t and βy,t is assumed to follow independent random walk processes:[

βπ,t
βy,t

]
=

[
1 0
0 1

] [
βπ,t−1
βy,t−1

]
+

[
επ,t
εy,t

]
, where

[
επ,t
εy,t

]
∼ N(

([
0
0

]
,

[
σ2
π 0

0 σ2
y

])
I use three quarterly US time series for the time 1982Q1 to 2007Q2: The Federal funds rate for Rt

as well as real GDP growth rate and the GDP de�ator growth rate for Yt and Πt. As I have no
strong prior on the most suitable standard deviations – σr, σπ and σy – I use a grid search over
some possible values, ranging from very small, σi = e−6 to rather large σi = 10, for i ∈ {r, π, y}.
I choose the variances depending on which gives the highest likelihood for the model.15

Run the code example2.m to redo the Kalman �ltering. Note the twist here: As βπ,t and βy,t
are our unobservable states, the (time-varying, but deterministically given) vector [Πt, Yt] replaces
the time-constant matrix H in (4). Moreover, as we are interested in the variation of the states
(i.e. βπ,t and βy,t) over time, I use a slightly altered variant of the KF routine, kalmanf_xt.m
(the “xt” hints at the backing out of the states). Figure 1 plots the estimates for the Taylor rule
coe�cients as well as the used observable series.

14. This example is loosely based on a problem set by Massimiliano Marcellino, solved with Dominik Thaler.
15. Not surprisingly, the model favours high variances, allowing for a better �t, so σi is always close at the upper

bound for all variables. The di�erence for the coe�cient estimates, however, is negligible.
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Figure 1: Results for Example 2 (time-varying TR coe�cients for US)

There is indeed evidence for time-varying Taylor rule coe�cients (e.g., one can recognise a period
of an exceptionally low in�ation coe�cient around 2004). The averages for βπ,t and βy,t over the
considered period are 0.18 and 1.95, which is very close to standard calibration for those values
in standard DSGE models.16

6 Note on notation
Notation means confusion. Compare my notation to the one in Hamilton (1994), Canova (2007)
and the slides by JFV:

16. Note that I do not include a constant β0,t in eq. (15), which I found to absorb most of the movement in Rt
(drastically reducing the means of βπ,t and βy,t).
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here Hamilton Canova JFV

yt yt yt zt
xt ξt αt xt
H H x1t H
F F D1t F

Σt|t Pt|t Ωt|t Σt|t
Ωt|t — Σt|t Ωt|t
Kt Kt K̃t Kt

B17 A′ — —

Table 1: Comparison of Notation
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